
Argonne National Laboratory
9700 South Cass Avenue

Argonne, IL 60439

ANL/MCS-TM-248

The Kestrel Interface to the NEOS Server
1

by

Elizabeth D. Dolan
2
and Todd S. Munson

3

Mathematics and Computer Science Division

Technical Memorandum No. 248

June 2001

1This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of

the O�ce of Advanced Scienti�c Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38,

and by the National Science Foundation (Challenges in Computational Science)Grant CDA-9726385 and (Information

Technology Research) Grant CCR-0082807.
2Electrical and Computer Engineering Department, Northwestern University, and Mathematics and Computer

Science Division, Argonne National Laboratory, Argonne, IL 60439; e-mail dolan@mcs.anl.gov
3Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439; e-mail:

tmunson@mcs.anl.gov



Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the
United States Government and operated by The University of Chicago under the provisions of a
contract with the Department of Energy.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor The University
of Chicago, nor any of their employees or o�cers, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any speci�c commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency thereof.
The views and opinions of document authors expressed herein do not necessarily state or reect
those of the United States Government or any agency thereof, Argonne National Laboratory, or The
University of Chicago.

ii



Contents

Abstract 1

1 Introduction 1

2 AMPL Interface 2

3 GAMS Interface 5

4 Technical Details 7

5 Conclusion 8

Acknowledgments 9

References 9

iii



The Kestrel Interface to the NEOS Server

by

Elizabeth D. Dolan and Todd S. Munson

Abstract

The NEOS Server provides access to optimization solvers through the Internet with a suite

of interfaces. In particular, the Kestrel interface enables the remote solution of optimization

problems within the AMPL and GAMS modeling languages. Problem generation, including the

run-time detection of syntax errors, occurs on the local machine using any available modeling

language facilities. Solution takes place on a remote machine, with the result returned in the

native modeling language format for further processing. No signi�cant di�erences exist between

local and remote solutions. A byproduct of the Kestrel interface is the ability to solve in parallel

multiple problems generated by a modeling language.

1 Introduction

The NEOS Server [2, 3] is a convenient gateway to optimization software and services on the Internet.

Interested parties can evaluate many di�erent packages for solving their particular optimization

problems without installing the software on their local machine. Instead, the user communicates a

problem to the NEOS Server through e-mail, the Web, or a socket-based graphical user interface.

When using these interfaces, the local machine is responsible for submitting a representation of the

problem, for example, source code or a model written in modeling language syntax, to the NEOS

Server and waiting for the result. Problem validation and solution happen on remote resources.

An alternative for individuals with local access to the AMPL [5] or GAMS [1] modeling languages

is to use the Kestrel interface to the NEOS Server. In this case, a problem is generated using any

of the available modeling language facilities on the local machine, and the NEOS Server is used

only for remote solution. Because the problem is generated on the local machine, users can access

the �le-system and other utilities when specifying their model; and all syntax errors are detected

when the internal model representation is generated by AMPL or GAMS. Furthermore, the results

returned through the NEOS Server are available in the native modeling language format for further

processing.

No signi�cant di�erences exist between local and remote solutions when using the Kestrel inter-

face. Whenever a solve command is initiated in either AMPL or GAMS, the modeling software

generates an internal representation of the current problem and calls a corresponding local solver.

When using the Kestrel interface, the local solver executed is a Kestrel client, which contacts the

NEOS Server, submits the generated model representation within tags understood by NEOS, and

waits for the results. When the Kestrel client exits, the results are read by the modeling language

as if the solve were performed locally. A byproduct of the Kestrel interface is the ability to easily

solve multiple models in parallel [4].

1



The concepts employed when using the Kestrel client are the same for both the AMPL and GAMS

interfaces, but the mechanics of the implementations di�er because of the nature of the modeling

languages. Documentation for each interface follows, along with a discussion of the technical details.

2 AMPL Interface

Two methods exist for using the Kestrel interface in AMPL. The �rst method simply replaces the

normal solver used during a solve command with the Kestrel \solver," which submits the current

problem to the NEOS Server and retrieves the results. The second method uses separate submit

and retrieve facilities, which can be used to submit multiple problems to the NEOS Server before

retrieving any of the results. In both cases, the user speci�es a remote solver as one of the options

to the Kestrel client.

Users can download the Kestrel client for many di�erent architectures from the NEOS Server

Web site. To install the executable, users should unzip the archive in a directory within their path,

which enables the AMPL interpreter to locate the client during the solve command. Also contained

in the archive are three command scripts used for the submission, retrieval, and kill capabilities

discussed in the sequel.

Once the software is installed, the Kestrel interface can be used to solve an optimization problem

remotely. For example, consider the original code using LOQO [8] to solve an optimization problem

on the local machine.

ampl: model steel.mod;

ampl: data steel.dat;

ampl: option solver loqo;

ampl: option loqo_options 'outlev=2';

ampl: solve;

The corresponding code to solve the same problem remotely through the NEOS server follows.

ampl: model steel.mod;

ampl: data steel.dat;

ampl: option solver kestrel;

ampl: option kestrel_options 'solver=loqo';

ampl: option loqo_options 'outlev=2';

ampl: solve;

The two di�erences are that the solver is changed to kestrel, which is the client responsible for

submission and retrieval; and the remove solver to be used is identi�ed with the kestrel options

2



solver options, which set the solver to loqo in this instance. Any remote solver options are set

with the appropriate solver options, which in this case would be loqo options.

After the problem has been submitted to the NEOS Server by the Kestrel client, information is

written to the console indicating the job number and password assigned by the NEOS Server for the

particular solve. The output also indicates a Web site that can be used to monitor the progress of

the solve, for example,

Job has been submitted to Kestrel

Kestrel/NEOS Job number : 1234

Kestrel/NEOS Job password : abcd

Check the following URL for progress report :

http://www-neos.mcs.anl.gov/neos/neos-cgi/check-status.cgi

The use of network communication increases the likelihood that a particular solve will terminate

abnormally, for example, if the connection to the network is lost. If this happens, the job number

and password reported can be used to access the job when the system comes back on-line. For

example, we can communicate the above job and password to the Kestrel client with the job and

password solver options.

ampl: model steel.mod;

ampl: data steel.dat;

ampl: option solver kestrel;

ampl: option kestrel_options 'job=1234 password=abcd';

ampl: solve;

If the job and password solver options are set, the solve command waits for and reports the results

of the corresponding NEOS job.

The job number and password information also enable a user to submit a job and at some later

time retrieve the results. Currently, the NEOS Server keeps these jobs for three days after their

completion before removing them from the system. To continue other modeling language processing,

the user can interrupt the Kestrel solve manually and retrieve results later by setting the job and

password options appropriately. A better alternative, however, is to use the commands scripts for

separate submission and retrieval.

The submission and retrieval scripts are invoked in AMPL by using the commands facility. By

default, AMPL accesses only those scripts that are in the directory in which the AMPL interpreter

was invoked. Therefore, to use the provided commands, the user �rst must copy the scripts to the

current working directory. Separate submission is achieved by replacing a solve with the kestrelsub

and kestrelret pair of commands:

3



ampl: model steel.mod;

ampl: data steel.dat;

ampl: option solver kestrel;

ampl: option kestrel_options 'solver=loqo';

ampl: commands kestrelsub;

ampl: commands kestrelret;

The kestrelsub command prepares the current problem for submission and sends it to the NEOS

Server. The NEOS job number and password are then reported. The kestrelret command retrieves

the results. Any models submitted with kestrelsub should be retrieved with kestrelret.

The separate submission and retrieval capability allows a user to perform simple parallel pro-

cessing within AMPL. Kestrel submissions and local solves can be performed before retrieving the

results from a kestrelsub command. For simplicity, the retrieves are performed in the order in

which the jobs were submitted. The form of this approach is as follows:

ampl: model steel.mod;

ampl: data steel.dat;

ampl: option solver kestrel;

ampl: option kestrel_options 'solver=loqo';

ampl: commands kestrelsub;

ampl: let steelscalar := 5.0;

ampl: commands kestrelsub;

ampl: commands kestrelret;

ampl: commands kestrelret;

More sophisticated sequences are possible. For example, the user could solve some of the models

locally or use the problem statement to submit di�erent models.

Finally, the user has the ability to kill submitted jobs from within AMPL. When a Kestrel solve is

manually interrupted, the job normally continues running on the remote solution machine assigned

by the NEOS Server. These resources can be freed by sending a kill request for the remote job.

Depending on the solver and remote system, terminating the job through the NEOS Server may not

be possible, but attempting to do so is simple. The user sets the job number and password in the

kestrel options and calls the kestrelkill command as in the following.

ampl: option kestrel_options 'job=1234 password=abcd';

ampl: commands kestrelkill;

Attempts to obtain results from a killed job would likely lead to a solution �le unintelligible to

AMPL.

4



3 GAMS Interface

The Kestrel interface to the NEOS Server for GAMS is similar to the one written for AMPL. The

installation process involves placing the Kestrel archive for a particular architecture into the GAMS

system directory and using the gamsinst program to unzip and install the Kestrel-related \solvers."

After successful installation of the Kestrel package, the kestrel solver can be used to solve a

GAMS model remotely. For example, consider the trnsport model from GAMSLIB [1]. It can be

solved locally in GAMS through the following statements,

model trnsport /all/;

solve trnsport using lp minimizing z;

which specify the trnsport model and solve it with the default linear programming solver. We can

add an option statement to the code to explicitly specify the solver. For example, if we change the

linear programming solver to MINOS [6], the code becomes

model trnsport /all/;

option lp = minos;

solve trnsport using lp minimizing z;

To solve the same problem remotely through the NEOS Server, we simply change the linear pro-

gramming solver to kestrel.

model trnsport /all/;

trnsport.optfile = 1;

option lp = kestrel;

solve trnsport using lp minimizing z;

The statement trnsport.optfile = 1 speci�es that an options �le, called kestrel.opt, will be

used. The options �le contains the remote solver name as well as any options for the remote solver.

In particular, to use MINOS as the remote solver, we would write the following kestrel.opt �le:

kestrel_solver minos

A subsequent run of the code through the GAMS interpreter results in the trnsport model being

solved through the NEOS Server with the MINOS solver.

As with the AMPL interface, once the job is submitted to the NEOS Server, a job number,

password, and Web address are displayed to the screen, which provide information on accessing the

job and viewing the intermediate output, for example,

5



Job has been submitted to Kestrel

Kestrel/NEOS Job number : 1234

Kestrel/NEOS Job password : abcd

Check the following URL for progress report :

http://www-neos.mcs.anl.gov/neos/neos-cgi/check-status.cgi

If the NEOS Server or the network becomes unavailable after the submission, a particular job can

be retrieved by setting both the kestrel job and kestrel password in the options �le.

kestrel_solver minos

kestrel_job 1234

kestrel_password abcd

Re-issuing the command gams trnsport with this options �le will retrieve the results for the

speci�ed job number.

Separate submission and retrieval can also be issued by using the kestrelsub and kestrelret

solvers, respectively. The GAMS convention is to name the options �le solver.opt, where solver

is the name of the solver used. With the submit and retrieve commands, we break with this

convention and use kestrel.opt for the options �le, instead of the expected kestrelsub.opt and

kestrelret.opt. Therefore, to solve the trnsportmodel with the separate submission and retrieval

facilities, we would write the following code:

model trnsport /all/;

trnsport.optfile = 1;

option lp = kestrelsub;

solve trnsport using lp minimizing z;

option lp = kestrelret;

solve trnsport using lp minimizing z;

with the kestrel.opt �le containing the relevant kestrel solver option.

The submit and retrieve facilities enable simple parallel processing capabilities within GAMS.

Any number of submission and solves (including remote solves) can be performed before retrieving

any results. For simplicity, we assume a work queue model in which the jobs are retrieved in the

order submitted. Furthermore, the submit and retrieve ignore any job and password information in

the options �le.

Finally, GAMS also has a kill facility implemented by using the kestrelkill solver. In order to

use this facility, a model must be present so that the solver can be invoked.

6



model trnsport /all/;

trnsport.optfile = 1;

option lp = kestrelkill;

solve trnsport using lp minimizing z;

The kestrel.opt �le in this case should contain the job number and password of the job to kill.

Subsequent attempts to obtain the results from a killed job should be avoided if possible because

results will likely be mangled.

4 Technical Details

The Kestrel clients for AMPL and GAMS are written in C++ with all of the communication between

client and server performed by using the CORBA speci�cation [7]. This interface to the NEOS Server

is possible because of the behavior of the AMPL and GAMS modeling languages when a \solve"

command is encountered. Three steps are taken.

1. An internal representation of the current problem is written to disk.

2. The desired solver is located and executed with appropriate command line options, and the

solver writes a solution �le.

3. Finally, the solution �le produced by the solver executable is read by the interpreter, which

resumes processing.

The Kestrel client is a replacement for the local solver that relays the appropriate intermediate �les

to the NEOS Server in NEOS token-delimited submission format and obtains the results, which are

then written to the correct solution �le. When results are requested from the Kestrel client, we

simply wait for the appropriate results to become available and write the solution �le.

Special processing of the GAMS control �le, gamscntr.scr, is performed by the Kestrel client

code. The control �le contains all the information for the problem and is located in the scratch

directory. This �le is parsed by the Kestrel client to replace the absolute �le paths with relative �le

paths, and all information about the client GAMS installation, including the license information, is

removed before sending the job to the NEOS Server. The NEOS license for GAMS is patched into

the control �le on the server side.

The separate submission and retrieval commands maintain a work queue. For both AMPL and

GAMS, the work queue is a �le containing a listing of the submitted job numbers, passwords, and

remote solver names for jobs that have not been retrieved. The job number, password, and solver

information is appended to the work queue �le for each kestrelsub, and the �rst entry is removed

from the work queue during each kestrelret. The kestrelret command removes the work queue

�le when it becomes empty.

7



The AMPL interface writes the work queue to a �le created based on the process identi�cation

and the TMPDIR variable. For example, if the process identi�cation is \1234" and the TMPDIR is

\/tmp/", then the work queue �le will be located in a �le called \/tmp/at1234.jobs". The location

and name of the �le are similar to those used by AMPL for temporary NL and SOL �les. This

location can be a�ected by changing the TMPDIR variable. Furthermore, since the submission

and retrieval are performed by using commands, as opposed to a solve, the submission script

manually writes the current problem's description to a kestrel.nl �le contained in the current

directory, and the retrieve writes the solution to a kestrel.sol �le. Unfortunately, the kestrel.nl

and kestrel.sol are not removed when the AMPL session ends, and the user should remove them

manually.

For completeness the kestrelsub command does the following:

option ampl_id (_pid);

write bkestrel;

shell 'kestrel submit kestrel';

where the �rst command saves the process identi�cation into a variable accessible by the kestrel

client, the second manually writes the current model to disk, and the last submits the problem to

the NEOS Server. The kestrelret script is similar:

option ampl_id (_pid);

shell 'kestrel retrieve kestrel';

solution kestrel.sol;

where the shell command retrieves the solution �le, and the solution command forces the AMPL

interpreter to read the solution �le. The kestrelkill is implemented with the single command,

shell 'kestrel kill kestrel';

The GAMS interface writes the work queue to a kestrel.scr �le contained in the scratch

directory of the current GAMS process. The scratch directory is automatically removed when the

GAMS process exits, unless explicitly kept by the user with the gamskeep routine.

5 Conclusion

The Kestrel interface augments those interfaces currently available by NEOS and o�ers many ad-

vantages. The main advantage is that all models are created on the local machine, enabling users to

debug their models locally and use any of the modeling language mechanisms when specifying their

model. Another bene�t is that the results are made available within the modeling language, which

8



means that the users do not have to parse a results text �le to use the answers generated. Moreover,

the interface allows users to implement simple parallel programs.

Acknowledgments

We thank Bob Fourer for his assistance in testing the code in the early stages of development.

References

[1] A. Brooke, D. Kendrick, and A. Meeraus. GAMS: A User's Guide. The Scienti�c Press, South

San Francisco, 1988.

[2] J. Czyzyk, M. P. Mesnier, and J. J. Mor�e. The NEOS server. IEEE Journal on Computational

Science and Engineering, 5:68{75, 1998.

[3] M. C. Ferris, M. P. Mesnier, and J. Mor�e. NEOS and Condor: Solving nonlinear optimization

problems over the Internet. ACM Transactions on Mathematical Software, 26:1{18, 2000.

[4] M. C. Ferris and T. S. Munson. Modeling languages and Condor: Metacomputing for optimiza-

tion. Mathematical Programming, 88:487{506, 2000.

[5] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for Mathematical

Programming. Duxbury Press, 1993.

[6] B. A. Murtagh and M. A. Saunders. MINOS 5.0 user's guide. Technical Report SOL 83.20,

Stanford University, Stanford, California, 1983.

[7] J. Siegel. CORBA - Fundamentals and Programming. John Wiley & Sons, New York, 1996.

[8] R. J. Vanderbei. LOQO user's manual { Version 3.10. Optimization Methods and Software,

12:485{514, 1999.

9


